Wastewater-based surveillance of COVID-19 at building, cluster, and community scales

Presented by: Helena Solo-Gabriele, PhD University of Miami

Funded by NIH RADx-rad Grant 1U01DA053941-01 SF-RAD https://covidsfrad.org/

Motivation & Objectives

Infected humans excrete COVID-19 virus in feces and urine

<u>Ultimate objective</u>: Relate wastewater measurements to predict COVID-19 cases.

SF-RAD: SARS-CoV-2 Wastewater-Based Surveillance

Aims

- 1. Data standardization and informatics infrastructure
- 2. Wastewater characterization
- 3. Integration with human health surveillance

SF-RAD: SARS-CoV-2 Wastewater-Based Surveillance

Administrative Organization and Leadership

RADx Data Coodination Center (DCC) (a) Admin Operations, (b) Data Collection / Integration / Sharing, (c) Data Management / Use		
SF-RAD Administrative Leads Helena Solo-Gabriele (UM, PI), George Grills (UM, co-I), Stephan Schürer (UM, PI), Chris Mason (WCM, PI)		
Aim 1: Data Standardization Stephan Schürer (UM), Dusica Vidovic (UM)	Aim 2: Wastewater Characterization Helena Solo-Gabriele (UM), Chris Mason (WCM)	Aim 3: Integration with Human Health Surveillance Chris Mason (WCM), Naresh Kumar (UM)
Human Population and Clinical Patient Surveillance Erin Kobetz (UM), Natasha Solle (UM), Bhavarth Shukla (UM)		

SF-RAD: SARS-CoV-2 Wastewater-Based Surveillance

Project Leaders

Chris

Stephan

Helena

George

Pls: Chris Mason, Stephan Schürer, Helena Solo-Gabriele* Administrative Core: George Grills (co-l)

Administrative Support: Maria Robertson

Aim 2: Wastewater Characterization

Human Surveillance

Student Residents

Fall'20/Spring'21

- Students tested weekly (nasal swab, qPCR) Supplemented by breath test
- COVID results and total tests by building/dorm room

Summer/Fall'21

- Unvaccinated students tested weekly
- All students tested when wastewater exceeds

University Hospital

- Treat known COVID patients
- Electronic medical records pulled regularly

Miami-Dade County Residents (FDOH)

- Positives by zip code
- Number of tests by zip code

Sample Collection Plans

Community Scale 850,000

Hospital

Sample Collection

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Lessons learned from SARS-CoV-2 measurements in wastewater

- A new innovative detection method (V2G-qPCR) was successful
- SARS-CoV-2 in wastewater was a 4-day lead indicator
- Positivity (%) = 9 ln(C) / 10
 - 10² gc/L of SARS-CoV-2 in wastewater associated with 4% positivity.
 - 10⁴ gc/L→ 8%
 - 10⁶ gc/L→ 12%

SAMPLING at UMiami

Collect Samples Weekly Results available in 12 hours

<u>Sampling Sites</u> (Currently at 18 per day)

- 13 samples at Gables campus (undergraduate dorms) ٠
- 1 at Marine campus ٠
- 2 at University of Miami hospital
- 2 at the County Central District Wastewater Treatment Plant •

Sampling

SF-RAD

Sample Analysis Plan (Weekly Sampling)

SARS-CoV-2 Results

University Surveillance

University Surveillance

University Surveillance

Numbers of People Testing Positive In Sewershed

County Scale (Miami-Dade County, FL)

Log-log association between SARS-Cov-2 and new COVID-19 cases shows that

a 1% increase in SARS-CoV-2 was associated with 0.69% increase in COVID-19 new cases, June 2020 to May 2021

Coefficient = 0.69, 95% CI = 0.53 - 0.85; p < 0.01)

Association between observed and predicted new COVID-19 cases in Miami-Dade

Association between SARS-Cov-2 and new COVID-19 cases in Miami-Dade

Aim 2, Wastewater Characterization:

→Evaluate Sample Concentration Methods
→Evaluate Sample Collection Methods (grab vs composite).
→Evaluate influence of watershed scale.

Sample Collection Methods

- Grab = Instant in time and space (fresh sample)
- **Composite** = Samples collected over time at one location (sample sits)

Wastewater Sampling

Where do we sample wastewater from?

- Manholes (building scale)
- Pump Stations (cluster)
- Wastewater Treatment Plant

How do we collect the wastewater?

- Chain and bottle (grab)
- Automatic sampler (composite)
 - Samples on each hour, the
 - entire day- 24 hours

Watershed Scales

Sample Analysis Plan (Hourly Sampling)

Conclusions

- Wastewater in sewer variable.
 - 3 log-10 variation in SARS-CoV-2 observed at building scale
 - 1.5 log-10 variation in SARS-CoV-2 observed at cluster and community scale
- Degradation at room temperature, secondary
- Fecal coliform shows evidence of multiplication in sewer
- Specific conductivity correlated with fecal coliform at building scale

Next Steps

- Complete analysis of remaining targets including metagenomics
- Run statistics

Aim 3: Integration with Human Health Surveillance

Data and Methods Overview

- Analysis pipeline customized for metagenomic sampling
 - SARS-CoV-2 reads identified and filtered (kraken2)
 - Aligned to Wuhan reference with very sensitive local alignment (bowtie2)
 - Trim adapters (ivar trim) and deduplicate reads (Picard)
 - Compile coverage per base (samtools mpileup)
 - Variants called with liberal filters (min depth = 3; VAF > 0.1) (ivar variants)
 - Variants of Concern (VOC) per WHO-defined lineages examined
- Applicable to wastewater and clinical samples

UNIVERSITY OF MIAMI

Oncogenomics Shared Resource Lab Sylvester Comprehensive Cancer Center (Sion Williams)

Weill Cornell Medicine

Integrated Genomics Lab (Chris Mason)

Performance of ARTIC protocol on clinical and wastewater samples: good library efficiency to amplify SARS-CoV-2

- SARS-CoV-2 lineages in City wastewater mirror patient data
- Even at low viral load lineages can be discerned
- High diversity followed by Alpha, Gamma, Mu, then Delta
- Delta detectable at -7 days before first sequenced case

Weill Corne

- SARS-CoV-2 lineages in City wastewater mirror patient data ٠
- Even at low viral load lineages can be discerned ٠
- High diversity followed by Alpha, Gamma, Mu, then Delta •
- Delta detectable at -7 days before first sequenced case ٠

Medicine

• Peaks on Gables Campus reflect the abundance of Alpha in the City and patients

May 11th

South Gables Campus

- Low level Gamma cluster on campus ٠
- Distinct from City lineage distribution ٠

Medicine

- Building 12, 072021, all students tested, all negative
- Lineage matches abundant Delta strain

• Delta predominant lineage on campus in alignment with City and patients

Weill Cornel Medicine

qPCR

Action Items

- Complete analysis of the changes in variant dominance in wastewater and patient populations
- Analyze daily data to decrease uncertainty in case predictions
- Evaluate normalization of SARS-CoV-2 using PMMoV, B2M, fecal coliform
- Analyze hourly data to evaluate representativeness of grab versus composite samples
- Evaluate magnetic bead concentration methods
- Continue data standardization
- Complete operational informatics infrastructure

Acknowledgments: (NIH RADx-rad 1U01DA053941)

Thank you <u>https://covidsfrad.org</u>

